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a b s t r a c t

A systematic methodology for CSTR model reduction has been developed for multi-step biochemical
reaction schemes. The proposed method neglects the dynamics of the fast steps by projecting the over-
all system dynamics on the slow-motion invariant manifold of the system. In particular, using reaction
invariants in the description of the overall system dynamics, the slow-motion invariant manifold is calcu-
eywords:
ioreactors
athematical modeling
odel reduction
onlinear dynamics

lated by solving the pertinent invariance equation via series-solution or singular perturbation techniques.
The proposed method is an alternative to the quasi-steady state approximation which does not rely on
a priori physical information. The proposed approach is applied to two model reduction problems aris-
ing in anaerobic digestion. The results provide a rigorous answer on how to properly eliminate the fast
dynamics of the acidogenesis step.
ransient response
naerobic digestion

. Introduction

Multi-step biochemical processes involve a variety of reaction
chemes that relate with life. In every living organism, numer-
us reactions evolve simultaneously or sequentially with the aim
f producing energy for production of new cells and for main-
enance. From an engineering point of view, the dynamics of
iochemical process schemes involved, either at a single cell level
r at the level of pure or mixed microbial cultures, are partic-
larly interesting. In particular, mixed microbial processes are
uite common in numerous applications in biochemical engineer-
ng and environmental technology. In such complex microbial
nvironments as in the activated sludge process or the anaero-
ic digestion process, the interactions between different microbial
roups are complicated and extremely diverse (mutualistic, com-
etitive, amensalistic, prey–predator) [1]. There are a variety of
athematical structured and unstructured models of varying com-

lexity, aiming at describing the microbial interactions and the
ependence of the process performance on the bioreactor feed

haracteristics and the prevailing operating conditions.

Recognizing the importance and general applicability of some of
hese bioprocesses, such as activated sludge and anaerobic diges-
ion, the International Water Association (IWA) formed task groups

∗ Corresponding author. Tel.: +30 2610996339; fax: +30 2610993070.
E-mail address: kravaris@chemeng.upatras.gr (C. Kravaris).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.01.033
© 2009 Elsevier B.V. All rights reserved.

that developed typical generic models such as the activated sludge
model (ASM) [2] and the anaerobic digestion model (ADM) [3].
The IWA model for anaerobic digestion [3] defines a framework for
modelling a complicated process, based on the previous kinetic and
modelling studies of various researchers [4–7]. The models devel-
oped by the task groups reflect the current understanding of the key
biological and physicochemical processes that take place in such
complex environments. In that regard, they are quite useful as pro-
cess simulators, while they also offer excellent educational tools.
Since these models are sufficiently structured they must always be
properly modified and calibrated in order to adequately reflect a
particular situation at hand.

The use of complex models such as ASM and ADM, although
valuable for general process simulation, has severe shortcomings
if they are intended to be used for process control and optimisa-
tion [8]. This is because there are difficulties in determining the
numerous model parameters (non-identifiability of parameters),
while manipulating a large number of equations limits the appli-
cability for the dynamic analysis, process simulation and control.
In addition, although the model assumptions reflect quite well our
current understanding of the physical processes involved, many of
the individual steps may actually be so fast so that they do not
influence the overall process dynamics. Simpler models are needed,

that adequately describe the dynamics of the key measured vari-
ables. Such a reduction is meaningful from an intuitive point of view,
since (a) some of the processes may have no or small impact on the
measured process variables of interest, i.e. they may be unobserv-
able, or they may be negligible (b) some processes may be lumped

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:kravaris@chemeng.upatras.gr
dx.doi.org/10.1016/j.cej.2009.01.033
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o fewer processes without again any appreciable loss of infor-
ation, (c) some processes exhibit faster transients over a given

ime scale than others and, therefore, can be assumed to undergo
nstantaneous changes (d) for the specific operating conditions, sto-
chiometric constraints between the state variables may be valid at
ll times and as a result may be used to reduce the number of state
ariables. In complex multivariable systems such as biochemical
ystems, however, this intuitive basis of simplification relying on
hysical arguments may be risky, since the individual dynamics of
he variables may be interrelated and the distinction between slow
nd fast often becomes obscure.

An excellent review of the existing mathematical methods for
odel reduction in chemical reaction systems has recently been
ade by Okino and Mavrovouniotis [9]. There, three general types

f model reduction methods are reviewed: lumping, time-scale
ethods and invariant manifold methods. Such methods have been

pplied to reduce models for complex chemical systems [10–14], as
ell as complex biochemical pathways [15–18]. The Quasi Steady

tate (QSS) approximation has widely been used in (bio)chemical
ngineering [19–21] as well. Actually, the QSS approximation can
e justified mathematically by applying perturbation analysis tech-
iques, through which the dynamics of some states of the system
e.g. products with low solubility in the liquid phase or substrates
nvolved in fast reactions) can be neglected [8,22].

These methods may be used to justify or reject a particular model
eduction that has been made based on phenomenological argu-
ents. However, to our knowledge, only limited amount of work

as been done on developing mathematically solid model reduction
or complex environmental processes that contain mixed cultures
f microbial species.

Such systems contain a significant amount of biomass, main-
ained in the system through immobilisation or recycle, such as
iofilm systems and the activated sludge process respectively, and
re characterised by relatively slow changes in the biomass in
omparison with the various soluble substrates and metabolic
ntermediates that are rapidly adjusted to reflect the feed charac-
eristics and the mixed culture composition. Thus, it is common
nowledge that, in such systems the overall biomass concentration
nd the individual microbe composition vary with time constants
hat are often several orders of magnitude higher than the hydraulic
etention time (inverse dilution rate). However, even in cases of
uspended growth systems, in which particulate biomass and sub-
trates are removed at the same rate from the reaction system,
here may be additional valid basis for model reduction. In partic-
lar, the basis for model reduction in such systems arises from the
xistence of fast and slow bioconversion steps (which is often the
esult of wide differences in specific growth rates of the involved
pecies). In addition, the microbial network structure may often
llow for approximate decoupling of the fast steps from the slow
teps, allowing for further model simplification.

In this paper, a systematic methodology is proposed for the
eduction of dynamic models for multi-step biochemical reaction
chemes in a CSTR. The proposed methodology is based on an
nvariant manifold formulation of the model reduction problem,
nd in particular, on projecting the CSTR dynamics on the slow-
otion invariant manifold. To be able to compute the slow-motion

nvariant manifold, the proposed method makes use of reaction
nvariants [10,12,23,24] in the description of CSTR dynamics, and
ubsequently the invariance equation is solved via series solution
r singular perturbation techniques [13,14].

Once the general methodology is presented, it is applied to

n important mixed culture multi-step biochemical process, the
naerobic digestion process. The importance of this process results
rom the fact that it finds wide application in municipal sludge
reatment, in the treatment of high organic strength industrial
astewaters, in the treatment of the organic fraction of municipal
ring Journal 150 (2009) 462–475 463

solid waste and in the recent years, in the exploitation of energy
crops for the production of biogas [25]. In this process, a complex
microbial consortium degrades complex organic material, gener-
ating biogas (a methane and carbon dioxide mixture) which is a
useful renewable energy source. The application of the proposed
method results in reducing the model order to a system consisting
only of what is called in chemical engineering “rate limiting steps”,
namely, hydrolysis of particulate matter and acetoclastic methano-
genesis [26–29]. In this way, model reduction is justified through a
rigorous mathematical and systematic methodology, which is com-
plementary to the QSS approximation methodology (as applied by
Perrier and Dochain [8] and Dochain and Vanlrolleghem [22].

It should be stressed, however, that although the proposed
methodology has been developed for mixed microbial processes,
it can also be applied to other non microbial biochemical systems,
such as metabolic pathways, as well as to general chemical reaction
systems, following minor modifications.

2. Background

2.1. General model for a continuous stirred tank biochemical
reactor

The biochemical reactions by mixed microbial cultures, involve
numerous chemical species consumed (substrates) and produced
(intermediate or final metabolic products) and microbial groups
mainly grown. Chemical species produced by a microbial group are
often the substrate for the growth of other microbial groups, mak-
ing the whole process a sequence of individual process steps in a
scheme where the preceding steps may be independent of those
that follow.

Assuming that biochemical reactions, generally described
through

Si
rk−→Yj,k · Xj +

l∑
� = 1
(� /= i)

C�,k · S� (1)

take place in a chemostat (continuously stirred tank reactor; CSTR),
the following differential equations can be derived:

Ṡi = D(So
i

− Si) +
n∑
k=1

Ci,k · rk(S1, . . . , Sl, X1, . . . , Xm), i = 1, ..., l

Ẋj = D(Xo
j

− Xj) +
n∑
k=1

Yj,k · rk(S1, . . . , Sl, X1, . . . , Xm), j = 1, ...,m

(2)

where
D is the dilution rate, So

i
, i = 1, ..., l are the concentrations of

the chemical species (substrates) in the feed, Xo
j
, j = 1, ...,m are

the concentrations of the microbial masses in the feed, Si, i = 1, . . .,
l are the concentrations of the chemical species (substrates and/or
products) in the reactor, Xj, j = 1, . . ., m are the concentrations of the
microbial masses in the reactor, rk(S1, . . ., Sl, X1, . . ., Xm), k = 1, . . ., n
are the reaction rates, Ci,k and Yj,k are the stoichiometric coefficients.

It should be noted that the consumption of a substrate (e.g.

particulate matter) may not be associated with biomass growth.
Moreover, a single microbial group may grow on more than one
substrate and vice versa. Therefore, in the general case, the number
of the substrates involved in a bioreaction scheme will not be equal
to the number of microbial masses grown, that is l /= m.
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for every (S-, X- ) ∈Rl × Rm such that  (S-, X- ) = 0.
It is easy to verify that

 (S-, X- ) = A--

[
S- − S-

o

X- − X-
o

]
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Introducing vector notation for the concentrations and the rates

-
o =

⎡
⎣ S

o
1
...
So
l

⎤
⎦ , X- o =

⎡
⎣ X

o
1
...
Xom

⎤
⎦ , S- =

⎡
⎣ S1

...
Sl

⎤
⎦ , X- =

⎡
⎣ X1

...
Xm

⎤
⎦ ,

-(S-, X- ) =

⎡
⎣ r1(S1, · · ·, Sl, X1, · · ·, Xm)

...
rn(S1, · · ·, Sl, X1, · · ·, Xm)

⎤
⎦

nd denoting by C--
and Y--

the l × n and m × n matrices of the stoi-
hiometric coefficients, the model (2) takes a more compact form:

Ṡ- = D(S-
o − S-) + C-- · r-(S-, X- )

Ẋ- = D(X-
o − X- ) + Y-- · r-(S-, X- )

(3)

The general problem of model reduction for models of the form
f Eq. (2) will be the subject of the present paper. Before we proceed,
e will provide a brief review of the notions of reaction invariants

nd invariant manifold, which will play an instrumental role in the
evelopment of the proposed approach.

.2. Reaction invariants and the notion of invariant manifold

In the general model of Eqs. (2) or (3), there are (l + m) differential
quations that are affected by n reaction rates. As long as l + m > n
nd the differential equations are independent of each other, there
ill be (l + m − n) linear combinations of the concentrations that

re completely unaffected by the reaction rates and therefore com-
letely unaffected by the progress of the chemical reactions. In the

iterature, these are referred to as reaction invariants; they capture
he reaction stoichiometry relations, which are unaffected by the
eaction rates [10,12,23].

The reaction invariants can be easily calculated from the general
odel of (3).
Assuming l + m > n and

ank

[
C--
Y--

]
= n,

ne can find (l + m − n) linearly independent row vectors ˛�,
= 1,. . .,(l + m − n) of length (l + m) such that

�

[
C--
Y--

]
= 0, � = 1, · · ·, (l +m− n)

This means that the (l + m − n)×(l + m) matrix

--
=

⎡
⎣˛1

...
˛�

⎤
⎦

as rank (l + m − n) and satisfies

--

[
C--
Y--

]
= 0 (4)

It can then be easily verified, as a result of (2) and (3), that the
uantity

- = A--

[
S- − S-

o

X- − X-
o

]
(5)

atisfies the differential equation
-̇ = −Dz- (6)

The role of the reaction invariants can also be seen from the
teady-state version of the model (3). z- = 0 represents exactly the
l + m − n) eliminant relations from the steady-state model when
ring Journal 150 (2009) 462–475

the n reaction rates get eliminated. Therefore, z- = 0 describes the
(l + m − n) stoichiometry relations among the concentrations that
must be satisfied at steady state.

Under dynamic conditions, the (l + m − n) reaction invariants z-
have two very important properties, which are a direct consequence
of Eq. (6):

1. If z- = 0 at time t = 0, then z-(t) = 0 for every t > 0. In other words,
if the stoichiometry relations are initially satisfied, they will be
satisfied ever after.

2. If z-(0) /= 0, then z-(t) = e−Dtz-(0) and therefore lim
t→∞

z-(t) = 0. In

other words, if the system is initially off stoichiometry, the ini-
tial discrepancy will decay and eventually, the concentrations
will satisfy the stoichiometry relations.

In mathematical terms, property 1 states that the relation

A--

[
S- − S-

o

X- − X-
o

]
= 0,

whereA--
satisfies (4), defines an invariant manifold for the dynamics

(3).
By definition, ˝ = {x∈Rn| (x) = 0} where  : Rn → R

m is a
smooth map, is called invariant manifold for the dynamics ẋ =
f (x) , x∈Rn if it has the property that

 (x(0)) ∈˝⇒  (x(t)) ∈˝ ∀t > 0,

where x(t) is the solution of ẋ = f (x) with initial condition x(0).
On the other hand, property 2 states that the invariant manifold

is attractive.
By definition, given ẋ = f (x), an invariant manifold ˝ =

{x∈Rn| (x) = 0} is called attractive if it has the property that
for every x(0) with  (x(0)) near zero, �(x(t)) is bounded and
lim
t→∞

 (x(t)) = 0, where x(t) is the solution of ẋ = f (x) with initial

condition x(0).

2.3. The invariance equation

All invariant manifolds˝ = {x∈Rn| (x) = 0} to a given dynam-
ics ẋ = f (x) , x∈Rn, satisfy the invariance equation [13]:

∂ 

∂x
(x)f (x) = 0 ∀x∈˝ (7)

For the system of Eq. (3), every invariant manifold ˝ =
{(S-, X- ) ∈Rl × Rm| (S-, X- ) = 0} satisfies the following invariance
equation:

∂ 

∂S-
(S-, X- )[D(S-

o − S-) + C-- · r-(S-, X- )]

+∂ 
∂X-

(S-, X- )[D(X-
o − X- ) + Y-- · r-(S-, X- )] = 0 (8)
withA--
satisfying (4), indeed satisfies the above invariance equation.

Note, however, that all possible invariant manifolds for the
dynamics (3) will satisfy the invariance equation, not only the par-
ticular one generated by reaction invariants.
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.4. On the prospect of using reaction invariants for model
eduction

An attractive invariant manifold can be used for the purpose of
odel reduction, the reduced model arising as the projection of the

ynamics on the invariant manifold. Of course, there is a question
f what would be an appropriate invariant manifold for the purpose
f approximation of the dynamic model.

To be able to illustrate these ideas, and since we already have
n invariant manifold from the calculation of reaction invariants, it
ould be helpful to try to evaluate its potential for model reduction.

n this direction, it is convenient to perform a variable transfor-
ation on the dynamic model (3), using the (l + m − n) reaction

nvariants z- as dependent variables for the differential equations,
long with n out of the original variables [S- X- ]T that are independent
f the reaction invariants.

In particular, denoting by e1, . . ., el+m the rows of the
l + m) × (l + m) identity matrix, there will be n of them, say
i1 , . . . , ein , for some indices i1, . . . , in ∈N, such that the matrix

--
=

⎡
⎢⎣
ei1
...

ein

⎤
⎥⎦

as the property that

[
A--
E--

]
is nonsingular.

Then, the part of the state vector

S̃-
X̃-

]
= E--

[
S-
X-

]
,

together with the reaction invariants z-, forms a complete set of
oordinates to describe the reactor dynamics. In these coordinates,
he system is described as

ż- = −Dz-[
˙̃S-
˙̃X-

]
= D
(
E--

[
S-
o

X-
o

]
−
[
S̃-
X̃-

])
+ E--

[
C--
Y--

]
r̃-(z-, S̃-, X̃- )

(9)

here

r̃-(z-, S̃-, X̃- ) = r-(S-, X- )

∣∣∣∣∣∣∣∣[ S-
X-

]
=

[
A

E

]−1

⎡
⎢⎢⎣
z- + A--

[
S-
o

X-
o

]
S̃-
X̃-

⎤
⎥⎥⎦

(10)

It is interesting to observe the structure of the transformed
ynamic Eq. (9) (see Fig. 1), which reveals important features of the
ynamic behavior of the reactor. First of all, one can observe that in
he description (9), the dynamics is decomposed in two parts: one
hat describes the dynamics of the reaction invariants, followed by

nother part that describes the speed of progress of chemical reac-
ions. Reaction-invariant dynamics is (l + m − n)-dimensional and
ecays proportionally to e−Dt, where D is the dilution rate, whereas
eaction dynamics is n-dimensional and is dependent upon the
eaction rate expressions.

ig. 1. Structure of the dynamic model when the reaction invariants are used as a
art of the description of CSTR dynamics.
ring Journal 150 (2009) 462–475 465

Given the previously discussed properties of invariance and
attractivity of the manifold z- = 0, it is tempting to set z- = 0 in the
dynamic Eq. (9) and obtain the reduced model[

˙̃S-
˙̃X-

]
= D
(
E--

[
S-
o

X-
o

]
−
[
S̃-
X̃-

])
+ E--

[
C--
Y--

]
r̃-(0, S̃-, X̃- ) (11)

which is n-dimensional, instead of (l + m)-dimensional. The ques-
tion is whether the reduced model (11) represents a meaningful
approximation of the original model (3) or (9).

If the stoichiometry relations z- = 0 are always satisfied during
the operation of a reactor and it cannot go off balance, then the
reduced model (11) will perfectly match the dynamic model (3) or
(9).

If, however, e.g. in the presence of pulse disturbances in the
feed concentrations, instantaneous deviations from stoichiometry
can occur, they will decay proportionally to e−Dt. The question is
then whether e−Dt is significantly faster than the rest of the reactor
dynamics, which is governed by the speed of the chemical reactions.
In case of affirmative answer, the reduced model (11) provides a
meaningful approximation, since it ignores only the fast transients
of approach to the invariant manifold, while it captures the slow
motion on the manifold.

In practice, however, it does not make much sense to use high
dilution rates relative to the speed of progress of chemical reactions,
since this would lead to unnecessarily low conversions. For this rea-
son, in most practical applications, the invariant manifold z- = 0 is
not expected to be the appropriate one to generate an approximate
reduced-order model. One must find another invariant manifold,
which is always approached through “fast” transients, whereas the
motion on the manifold is governed by “slow” transients.

3. A very simple motivating example

To illustrate the ideas outlined in the previous section, a very
simple example is discussed. Consider a chemostat described by
the following mathematical model

dX

dt
= −D · X + Y · r

dS

dt
= −D · S + F − r

(12)

where X and S are the biomass and substrate concentrations respec-
tively, D is the dilution rate, Y is the biomass yield, F = D·So is the
feed rate of the substrate, So is the substrate concentration in the
feed, r = 1/Y ·�max · S/(KS + S)X is the reaction rate, �max is the
maximum specific growth rate constant of the biomass, KS is the
saturation constant, and assume that it operates under low dilution
rate relative the growth of microorganisms: D/�max � 1.

The system of Eq. (12) can be easily transformed to the form
(9). In particular, defining z = X/Y + S − So, the reaction invariant, and
keeping the substrate as the second state, system equations become

dz

dt
= −D · z

dS

dt
= D · (So − S) − �maxS

KS + S · (So − S + z)
(13)

If it is assumed that the z-dynamics in (13) is at equilibrium and
therefore z = 0, the system dynamics reduces to:

dS

dt
=
(
D− �maxS

KS + S
)

· (So − S) (14)
The above differential equation, along with the stoichiometry
relation

X = Y · (So − S) (15)

forms the reduced model.
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ever, the information needed for the application of the method,
ig. 2. Comparison of substrate (S) versus biomass (X) trajectories of full-order
odel (12) with reduced-order model (14)–(15).

It would be interesting to compare the reduced model of (14) and
15) to the original model of (12) or (13). For this purpose, simula-
ions were performed for the following representative values of the
arameters: So = 700 mg/l, KS = 21.15 mg/l, �max = 0.21 d−1, Y = 0.95,
= 0.1 d−1 (obtained from fitting a simple Monod model on the

inetic data of [30]).
Fig. 2 depicts the phase portrait of the original model (12)

or the above values of process parameters. For comparison pur-
oses, a representative trajectory of the reduced model (14) and
15) is also traced. Whenever the system is initially satisfying sto-
chiometry i.e. X(0) = Y·(So − S(0)), the system trajectory follows
he dashed line (reaction-invariant manifold) and the reduced

odel exactly matches the original model. If, however, the system
s initially off stoichiometry i.e. X(0) /= Y·(So − S(0)), the reduced

odel assumes that stoichiometry is instantaneously restored i.e.
(0+) = Y·(So − S(0)), and then the system trajectory follows the
eaction-invariant manifold. Comparing the representative trajec-
ory of the reduced model to the corresponding trajectory of the
ull model starting from the same initial conditions, we observe
hat they are in gross disagreement, even though in both cases
he steady state is eventually reached. The reason of the dis-
greement is that, in this example, the reaction dynamics is
uch faster than the dynamics of restoration of stoichiometry

z-dynamics in (13)). Indeed, computing the eigenvalues of the
inearization of (13), we find that the eigenvalue associated with
he z-dynamics is �1 = −D = −0.1, whereas the other eigenvalue,
ssociated with the progress of the reaction, is �2 = −1.85463,
lmost 20 times faster. The error made in the model reduction was
hat the slow dynamics was rejected and the fast dynamics was
etained.

It must be emphasized at this point that the theory of reaction
nvariants was never meant to be a general approach for model
eduction. In the original paper by Asbjornsen and Fjeld [23], reac-
ion invariants were suggested for model reduction purposes, only
or those applications where the reactor cannot go off stoichiom-
try. However, transformation of the dynamic model to the form
9), using the reaction invariants, is always an insightful descrip-
ion of the reactor dynamics that can facilitate stability analysis
nd simulation.

Let’s see now how a good engineer would derive a simple and

airly accurate reduced-order model for the chemostat via a quasi-
teady-state approximation (QSSA). Under the stated low-dilution-
ate conditions during chemostat operation (12), the feed rate of the
ubstrate is expected to approximately match the rate of utilization
ring Journal 150 (2009) 462–475

of the substrate:

F − r ≈ 0, or equivalentlyD · So ≈ 1
Y

· �max · S
KS + S X (16)

The above defines a relation between biomass and substrate that
must hold approximately at all times, after a fast transient period
on the substrate.

Solving the above relation for the substrate leads to

S = KS · Y · So · D
X ·�max − Y · So · D (17)

and substituting r = F in the biomass balance gives dX/dt = −D·X + Y·F,
i.e. that

dX

dt
= −D · X + Y · D · So (18)

Thus, one obtains the following approximate 1st order model for
the reactor dynamics:

dX

dt
= −D · (X − Y · So) (19)

S = KS · Y · So · D
X ·�max − Y · So · D (20)

Note that the foregoing derivation has been based on physical
understanding and intuition and, at a first glance, it appears to be
unjustified from a mathematical point of view. However, guided
again by physical understanding and intuition, it is possible to
develop a mathematical justification via singular perturbation the-
ory. For this purpose, one must discover, or rather invent, a small
parameter ıwhich, as it tends to zero, gives rise to the QSS approx-
imation. In our case, the argument goes as follows.

Because D/�max � 1, the equilibrium value of the substrate

Ss = D · KS
�max − D = KS · D/�max

1 − D/�max
≈ KS · D

�max

will be very small. Therefore, in transient conditions as well, S is
expected to be small, and it is meaningful to rescale S with respect
to Ss:

S′ = S

Ss
(21)

so that, after rescaling, the substrate concentration is O(1). In terms
of the rescaled substrate concentration, the substrate balance is
written as

ı · dS
′

dt
= −ı · D · S′ + F − r where ı = Ss (22)

In the limit as ı→ 0, neglecting the O(ı) terms, leads to 0 = F − r, i.e.
to the QSS approximation.

The phase portrait of Fig. 3 has been constructed for the same
values of the parameters as before. The substrate and biomass con-
centrations calculated from the simplified model (19) and (20)
follow a trajectory which is close to the original model trajectory.
In this sense, QSSA provides a suitable approximation for this class
of models. Also, it should be noted that the steady state predicted
by the QSSA is close but not exactly equal to the original system’s
steady state. This is because of the way QSSA was derived, by set-
ting the algebraic sum of all rates involving certain species equal to
zero.

QSSA is a good method as long as it is properly used. QSSA can
be and has been extended to more complicated systems. How-
such as the species of which the algebraic sum of all rates is
approximately zero, or the relevant small parameter, is based
on physical understanding and intuition. Sometimes, in compli-
cated problems, intuition can be misleading and there have been



K. Stamatelatou et al. / Chemical Engineering Journal 150 (2009) 462–475 467

F
m

m
(

p
o
t
a
e
i
w

f
u
b
o
c
t
b
a

 

I
r
d

F
r

ig. 3. Comparison of substrate (S) versus biomass (X) trajectories of full-order
odel (12) with reduced-order model (19)–(20).

any erroneous QSS approximations suggested in the literature
see [13]).

In order to motivate the model reduction methodology to be
roposed in the present work, consider again the phase portrait
f the exact system (12), which was shown in Figs. 2 and 3. From
he phase portrait, it is clear that all trajectories asymptotically
pproach a curve, which is an attractive invariant manifold. To see
xactly what happens, a specific trajectory is examined in detail
n Fig. 4. In Fig. 4(a), the trajectory is depicted in an S–X diagram,

hereas Fig. 4(b and c) depicts the corresponding time responses.
The time responses show that the system first goes through a

ast transient phase and then a slow transient phase. The substrate
ndergoes a large change during the fast transient phase, while the
iomass changes very little; this corresponds to the high-slope part
f the S–X trajectory. On the other hand, the slow transient phase
orresponds to the part of the S–X trajectory that coincides with
he invariant manifold. On the invariant manifold, substrate and
iomass change slowly together, while being interrelated through
n algebraic relationship of the form
(S(t), X(t)) = 0

f this algebraic relationship can be calculated, the system trajecto-
ies can be approximated by appropriately “projecting” the system
ynamics on the invariant manifold.

ig. 5. Approximation of the dynamics of the states by projection on the invariant ma
epresentative trajectory is shown. The trajectories of the reduced and the original model
Fig. 4. (a) Trajectory of substrate concentration versus biomass concentration when
initiated at S = 0 and X = 600 mg/l. The corresponding time responses of the two states
are depicted in (b) and (c).

Fig. 5 illustrates this projection idea, on the same trajectory as
in Fig. 4. The fast motion towards the invariant manifold is approx-
imated by a straight line and the slow motion by the invariant
manifold. In this way, the approximation is in error only on the
curved corner of the trajectory.

The accuracy of the approximation will depend on the speed of
the fast dynamics relative to the slow dynamics. If the fast dynamics
is much faster than the slow dynamics (e.g. by a couple of orders of
magnitude), the change in slope of the system trajectory will be very
abrupt and the approximation will be very accurate. Otherwise, the
error in the approximation may be more significant.

Fig. 6 gives the general picture of the model reduction approach
to be developed in the next section. In general, in the presence
of more than two states, the attractive invariant manifold will
not necessarily be a curve; it will be a hypersurface of dimension
≥1. The invariant manifold will be approached after fast tran-
sients, whereas the motion on the manifold will characterize the
slow transients, where the system’s state variables are interre-

lated algebraically. The reduced model will consist of the projection
the system dynamics on the slow-motion invariant manifold. The
projection approximation will involve “sharp edges”, ignoring the
curvature of the trajectories in their approach towards the invariant
manifold.

nifold. The phase portrait is depicted on the left, where the approximation of a
are compared in the zoomed in area of the graph (right).
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ig. 6. Geometric interpretation of the role of invariant manifold in model reduction.

. Proposed approach for model reduction

The goal of this section is to develop a systematic model reduc-
ion methodology for mixed culture bioprocesses described by a

odel of the form (2) or (3), based on projecting the system dynam-
cs on the slow-motion invariant manifold, in the sense described
ualitatively in the previous section.

Following the theoretical results of Kazantzis and Kravaris [14],
he proposed methodology involves two steps:

1) identifying and computing the appropriate slow-motion attrac-
tive invariant manifold for the reactor

2) generating a reduced model by projecting the dynamics on that
manifold.

he starting point of the proposed methodology is the dynamic
odel (9), which uses reaction invariants.
As a first case, consider the situation where all the chemical

eactions proceed significantly faster than e−Dt. Then, the system
onsists of a series connection of the reaction-invariant dynamics
slow) followed by the reaction dynamics (fast), as shown in Fig. 7.

The slow-motion invariant manifold can then be expressed as
n algebraic relationship that gives the fast variables as a function
f the slow variables:

S̃-
X̃-

]
= T(z-) (23)

here T : Rl+m−n → R
l+m. The invariant manifold satisfies the

nvariance Eq. (7), which for system (9), takes the form:

−D · z-)
∂T

∂z
(z-) = D ·

(
E--

·
[
S-
o

X-
o

]
− T(z-)

)
+ E-- ·

[
C--
Y--

]
· r̃-(z-, T(z-)) (24)

Once the above differential equation is solved for T(z-), the
educed model is:

ż- = −D · z-[
S̃-
]

= T(z)
(25)
X̃-
-

onsider now the situation where, among the chemical reactions,
here are some that proceed at a slow rate, which is comparable to
he dilution rate, and must be accounted for in the reduced model.

ig. 7. Sequential structure of a reactor system where slow reaction-invariant
ynamics precede the fast reaction dynamics.
Fig. 8. Reactor dynamics in the form of a two-step process, with the reaction of the
first step being faster.

For example, suppose that the bioprocess dynamics evolves in
two steps, the first one involving fast reactions, while the second
involves slow reactions (Fig. 8).

Here the understanding is that each process step involves a sin-
gle reaction or a cluster of chemical reactions of similar speed. It
is important to note that the first process step also encompasses
reaction-invariant dynamics, which evolve according to the dilu-
tion rate, even though the reaction themselves may be fast. In order
to describe this situation, it is useful to decompose the dynamics of
the first process step (Fig. 9).

This translates into a mathematical description of the form

ż-
[1] = −D · z-[1]⎡
⎣ ˙̃S-

[1]

˙̃X-
[1]

⎤
⎦ = D ·

(
E--

[1] ·
[
S-
o[1]

X-
o[1]

]
−
[
S̃-

[1]

X̃-
[1]

])

+E--
[1] ·
[
C--

[1]

Y--
[1]

]
· r̃-

[1](z-
[1], S̃-

[1]
, X̃-

[1]
)

Ṡ-
[2] = D · (S-

o[2] − S-
[2]) + C--

[2] · r-[2](z-
[1], S̃-

[1]
, X̃-

[1]
, S-

[2], X-
[2])

Ẋ-
[2] = D · (X-

o[2] − X-
[2]) + Y--

[2] · r-[2](z-
[1], S̃-

[1]
, X̃-

[1]
, S-

[2], X-
[2])

(26)

where the superscript ‘[1]’ refers to the variables and parameters
of Step #1 and ‘[2]’ to Step #2.

Then, the slow-motion invariant manifold can be expressed as an
algebraic relationship among the state variables of the first process
step, providing the fast variables as a function of the slow variables:[
S̃-

[1]

X̃-
[1]

]
= T(z-

[1]) (27)

where T satisfies the invariance equation

(−D · z-
[1]) · ∂T

∂z[1]
(z-

[1])

= D ·
(
E--

[1] ·
[
S-
o[1]

X-
o[1]

]
− T(z-

[1])

)
+ E--

[1] ·
[
C--

[1]

Y--
[1]

]
· r̃-

[1](z-
[1], T(z-

[1]))

(28)

Once the above equation is solved, the reduced model will con-
sist of two components: a reduced model for Process Step #1
(obtained by dropping the fast modes), followed by the model for
Process Step #2 (as is):

ż-
[1] = −D · z-[1],

[
S̃-

[1]
]

= T(z-
[1])
X̃-
[1]

Ṡ-
[2] = D · (S-

o[2] − S-
[2]) + C--

[2] · r-[2](z-
[1], T(z-

[1]), S-
[2], X-

[2])

Ẋ-
[2] = D · (X-

o[2] − X-
[2]) + Y--

[2] · r-[2](z-
[1], T(z-

[1]), S-
[2], X-

[2])

(29)

Fig. 9. Decomposition of the dynamics in a two-step reaction system.
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Fig. 10. Reactor dynamics involving a three-step reaction system, with the reactions
of the second step being the fast reactions.
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Fig. 11. General reaction dynamics decomposition.

s a second example, consider the situation of a three-step reaction
ystem, where the fast-reactions step is the second one (Fig. 10).

Then, the slow-motion invariant manifold will be an alge-
raic equation relating only the variables of the first two steps

-
[1], X-

[1], S-
[2], X-

[2] and can be computed after appropriate decom-
osition of the second step into reaction-invariant dynamics (slow)
nd reaction dynamics (fast), and solution of the corresponding
nvariance equation for Steps #1 and #2.

There are many possible cases in mixed culture bioprocesses;
n general, several process steps may be involved, a fast-reactions
tep can be anywhere between the first and the last place, and
here might be more than one fast-reactions steps. Model reduc-
ion involves elimination of the dynamics of the fast reactions by
rojecting the system dynamics on the slow-motion invariant man-

fold, which can be represented as an algebraic relation among all
he variables from the first process step up to the last fast-reactions
tep. Fast-reactions steps should be decomposed into reaction-
nvariant dynamics (slow) and reaction dynamics (fast) and then,
he appropriate invariance equation is set up for the chain starting
rom the first process step and ending after the last fast-reactions
tep. The solution of the invariance equation will give the fast states
s a function of the slow states.

Serial structure is quite common in mixed culture bioprocesses,
ven though it is not always the case. In the absence of a serial
tructure, the reaction-invariant dynamics will generally be slow
hereas the reaction dynamics will incorporate both slow and fast
odes. Then, it is possible to mathematically decompose the reac-

ion dynamics into a serial connection of slow and fast modes after
n appropriate coordinate transformation (see general construction
n [14]) (Fig. 11).

The slow manifold

-
= T(z-, �- ) (30)

an then be computed in the same spirit by considering the
eaction-invariant dynamics together with the slow-reaction
ynamics as one entity (slow subsystem) followed by the fast-
eaction dynamics (fast subsystem), and solving an appropriate
nvariance equation.

. Application to anaerobic digestion

The model reduction methodology outlined in the previous sec-
ion will now be applied to two cases of anaerobic digestion. In the
rst case, a soluble substrate is fed to a chemostat and the pro-

esses taking place are acidogenesis and methanogenesis. In the
econd case, a particular substrate is fed, with a hydrolysis step
receding acidogenesis and methanogenesis. The fast dynamics is
he first process step in the first case, while in the second case it
ies between two slower steps. As a result, the invariant manifold
Fig. 12. Anaerobic digestion as a two-step process.

equation as well as the procedure for model reduction is different
in the two cases.

5.1. Case 1: Model reduction for anaerobic digestion with soluble
substrate feed

The anaerobic digestion of a soluble substrate can be described
as a two-step sequential process if it is desired to keep the model
structure relatively simple (Fig. 12): the organic soluble substrate
(S1) is converted to a volatile fatty acid mixture (S2) by the aci-
dogenic bacteria (X1) and finally the acids are utilized by the
methanogens (X2) to form the biogas.

Assuming that the anaerobic digestion takes place in a CSTR
and that the feed only contains the organic soluble substrate (no
biomass and no volatile fatty acids), the mathematical description
of the dynamics takes the form:

dX1

dt
= −D · X1 + Y1 ·�1(S1) · X1

dS1

dt
= D · (So1 − S1) −�1(S1) · X1

dX2

dt
= −D · X2 + Y2 ·�2(S2) · X2

dS2

dt
= −D · S2 + c2 ·�1(S1) · X1 −�2(S2) · X2

(31)

where S1 and S2 are the concentrations of the soluble organic
substrate and volatile fatty acids respectively; X1 and X2 are the
concentration of the acidogens and methanogens respectively, D is
the dilution rate; �1(S1) = 1/Y1 ·�max 1 · S1/(KS1 + S1) is the spe-
cific consumption rate of S1 under the assumption of Monod
kinetics, �2(S2) = 1/Y2 ·�max 2 · S2/(KS2 + S2 + S2

2/KI) is the spe-
cific consumption rate of S2, under the assumption of Andrews
kinetics to allow for acid inhibition on methanogenesis;�max1 and
�max2 are the maximum specific growth rate of the acidogens and
methanogens respectively; KS1 and KS2 are the corresponding sat-
uration constants; KI is the inhibition constant; So1 is the substrate
concentration in the feed; Y1 and Y2 are the biomass yield for aci-
dogens and methanogens, and c2 is the stoichiometric coefficient
of the conversion of S1 to S2. It is important to observe that system
(31) has a serial structure. Indeed, the first two equations (describ-
ing dynamics of the step of acidogenesis) are independent of the
other two (describing the dynamics of the step of methanogenesis).

The following standing assumptions will be made throughout
this section:

(A1) �max1 >> �max2 and KS2 > c2·KS1 (the rate of acidogenesis is
much higher than the rate of methanogenesis);
(A2) So1 >> KS1 and c2 · So1 >>

√
KS2 · KI (the substrate in the feed

is in excess);
(A3) D < �max 2

1+2
√
KS2/KI

(the dilution rate is sufficiently low, to guar-

antee that both biomasses, X1 and X2 can be sustained at non zero
values at steady state).
Under the above assumptions, the system (31) has four steady
states: two trivial steady states (one corresponding to methanogen
washout and one to washout of both acidogens and methanogens)
and two non-trivial steady states. The trivial steady states are unde-
sirable. Out of the two non-trivial steady states, only one is locally
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symptotically stable, as can be seen through a standard linear sta-
ility analysis. Anaerobic digesters are designed to operate at their
on-trivial stable steady state. Therefore, the goal of this section is
o derive a reduced-order model for the anaerobic digester around
he non-trivial asymptotically stable steady state.

A straightforward calculation gives this steady state in terms of
he process parameters:

S1s = D · Ks1
�max 1 − D, X1s = Y1 · (So1 − S1s)

S2s = 2 · D · Ks2
(�max 2 − D) +

√
(�max 2 − D)2 − 4 · D2 · Ks2/KI

,

X2s = Y2 · (c2 · (So1 − S1s) − S2s)

(32)

Because of the stated assumptions, the above steady state is pos-
tive and therefore, feasible. The eigenvalues of the linearization of
he dynamics around this steady state are given by:

�1 = −D

�2 = −�max 1 · Ks1
(Ks1 + S1s)

2
· (So1 − S1s)

= − (�max 1 − D) · ((�max 1 − D) · So1 − D · Ks1)
�max 1 · Ks1

�3 = −D

�4 = −�max 2 · (Ks2 − S2
2s/KI)

(Ks2 + S2s + S2
2s/KI)

2
· (c2 · (So1 − S1s) − S2s)

(33)

nd they are all negative.
Some comments regarding the above eigenvalues will be useful

n subsequent developments:

(i) Because of the serial structure of the dynamic system, consist-
ing of a series of two steps (acidogenesis and methanogenesis),
the eigenvalues consist of two distinct subsets, one for each
step. In particular, eigenvalues �1 and �2 characterize the local
dynamics of the first step (the first two differential equations
that describe acidogenesis) whereas eigenvalues �3 and �4
characterize the local dynamics of the second step (the last
two differential equations that describe methanogenesis).

(ii) Eigenvalue �1 = −D characterizes the reaction-invariant
dynamics of the acidogenesis step, whereas �3 = −D character-
izes the reaction-invariant dynamics of the methanogenesis
step. Eigenvalues �2 and �4 characterize the speed of the
corresponding chemical reactions for the acidogenesis and the
methanogenesis steps respectively.

iii) Acidogenesis reactions proceed much faster than the corre-
sponding reaction invariant dynamics. This is visible through
the ratio of the corresponding eigenvalues:

�1

�2
= D ·�max 1 · KS1

(�max 1 − D) · ((�max 1 − D) · So1 − D · KS1)

= 1
1 − D/�max 1 · (1 + KS1/So1)

− 1
1 − D/�max 1

≈
(

D

�max 1

)
·
(
Ks1
So1

)
<< 1 (34)

s a result of the previous assumptions.
iv) Acidogenesis reactions proceed much faster than methano-
genesis reactions. This is visible from the corresponding
eigenvalues. Indeed, from the expression for �4, we have
the bound: |�4| ≤ �max 2/KS2 · c2 · So1, and combining with
ring Journal 150 (2009) 462–475

�2 ≈ −�max 1/KS1 S
o
1, it follows that

|�4/�2| � �max 2/�max 1 · (c2 · KS1/KS2)<< 1.

Assigning typical values for the model parameters [7]:
�max1 = 4.2 d−1, �max2 = 0.36 d−1, KS1 = 23 mg/l, KS2 = 138 mg/l,
KI = 4,000 mg/l, Y1 = 0.11, Y2 = 0.04 and c2 = 1, a substrate concen-
tration in the feed So1 = 10,000 mg/l, and a typical value of the
dilution rate D = 0.2 d−1, the eigenvalues are �1 =�3 = −0.2 = D,
�2 = −1656.12, �4 = −4.22.

The conclusion from the above comments (i)–(iv) is that the
dynamics of the anaerobic digestion system conforms with the
setting of Fig. 8 with S-

[1] = S1, X-
[1] = X1, S-

[2] = S2, X-
[2] = X2.

In order to proceed with model reduction, we will need to
decompose the dynamics of the first step (acidogenesis) into reac-
tion invariant dynamics and reaction dynamics, so that the overall
system has the structure of Fig. 9 and Eq. (26). In particular, defining
(z = S1 − So1 + X1/Y1), Eqs. (31a) and (31b) are transformed to:

dz

dt
= −D · z

dS1

dt
= D · (So1 − S1) − Y1 ·�1(S1) · (So1 − S1 + z)

(35)

In this way, the slow reaction-invariant dynamics precedes the
fast reaction dynamics of acidogenesis. Eq. (35) together with (31c)
and (31d) form the entire system for the anaerobic digestion, which
has the structure of Eq. (26) and Fig. 9. The slow-motion invariant
manifold is of the form

S1 = T(z) (36)

where T satisfies the invariance Eq. (28) which, in the present case,
becomes

(−D · z)dT
dz

= D · (So1 − T(z)) − �max 1 · T(z)
KS1 + T(z)

· (So1 − T(z) + z) (37)

The initial condition to (37) is

T(0) = S1s (38)

which is a consistency condition that guarantees that the invariant
manifold passes through the steady state point.

Eq. (37) is singular because at steady state, z = zs = 0, and the first
derivative of T(z) is multiplied by zero. A sufficient condition for
existence and uniqueness of solution of (37) is the following non-
resonance condition:

There is no integer N > 0 such that �2 = N·�1,

as a result of a general theorem on singular differential equations
[31].

Therefore, the approximate reduced-order model for the
dynamics of acidogenesis on the invariant manifold is calculated
by (25) which, in the present case becomes:

dz

dt
= −D · z

S1 = T(z)

X1 = Y1 · (So1 − T(z) + z)

(39)

For the calculation of the invariant manifold, two alternative
approaches were examined.

5.1.1. Power series solution of the invariance equation

In this method, a Taylor series expansion for the solution T(z) of

(37) is postulated:

T(z) = S1s + T1 · z + T2 · z
2

2
+ T3 · z

3

6
+ · · · (40)
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ig. 13. Approximate calculation of the invariant manifold in the form of power
eries expansion.

here T1, T2, T3, . . . are the coefficients of the expansion that must
e determined, and the above expression is substituted in (37) and
he terms are rearranged and collected in the form of:

1 · z + f2 · z2 + f3 · z3 + · · · = 0 (41)

Since (41) should hold for every z, the coefficients f1, f2, f3, . . .
ust be zero. The resulting algebraic equations are solved for the

nknown coefficients Ti and in this way, the invariant manifold, T(z),
s determined. For the particular numerical values of the parameters
nder consideration, and in the range of z ∈ [−7000, 7000], numer-

cal convergence was achieved at truncation order of about 14 (see
ig. 13).

.1.2. Asymptotic expansion of the solution of the invariance
quation

The invariant manifold T(z) could also be approximated using
erturbation analysis methods [32,33].

Setting ε= D/�max1, differential Eq. (37) can be written as fol-
ows:

ε · z · dT
dz

= ε · (So1 − T) − T

Ks1 + T · (So1 − T + z) (42)

T(z) is expanded in Taylor series with respect to the small param-
ter ε:

(z) = T1(z) · ε+ T2(z) · ε2 + T3(z) · ε3 + · · · (43)

here Ti(z) are unknown coefficients that must be determined.
ubstituting the expression (43) for T(z) in (42) and matching the
oefficients of like terms in ε, the unknown coefficients are calcu-
ated. In this way the invariant manifold is approximately calculated
s asymptotic series in D/�max1:

(z) = Ks1 · So1
So1 + z ·

(
D

�max 1

)
+ Ks1 ·

[(
So1

So1 + z

)2

− 2 · Ks1 · So1 · z
(So1 + z)3

]

·
(

D

�max 1

)2
+ Ks1

[(
So1

So1 + z

)3

− 7 · Ks1 · So21 · z
(So1 + z)4

− 4 · K2
s1 · So21 · z

(So1 + z)5
+ 6 · K2

s1 · So1 · z2

(So1 + z)5

]
·
(

D

�max 1

)3

(
D

)4

+O

�max 1
(44)

or the particular values of the parameters under consideration and
or the same range z ∈ [−7000, 7000], the 2nd order in ε approxi-

ation provides satisfactory accuracy.
Fig. 14. Approximations of the invariant manifold in the phase portrait for the
dynamics of acidogenesis (Taylor series expansion up to 14th order, 2nd order
asymptotic expansion via perturbation analysis).

Fig. 14 compares the two alternative approximations of the
invariant manifold S1 = T(X1/Y1 + S1 − So1) to the exact invariant
manifold generated numerically in the phase portrait of the aci-
dogenesis dynamics, over a broader range of process variables.

Appending the dynamic equations for methanogenesis (Eqs.
(31c)–(31d)), after substituting S1 and X1 in terms of the reaction
invariant variable, z, results in a 3rd-order model for the anaerobic
digestion process:

dz

dt
= −D · z

dX2

dt
= −D · X2 + Y2 ·�2(S2) · X2

dS2

dt
= c2 · Y1 ·�1(T(z)) · (So1 − T(z) + z) − D · S2 −�2(S2) · X2

(45)

Using (37) to substitute the term �1T(z))·(So − T(z) + z) in (45c),
the model can be rewritten as:

dz

dt
= −D · z

dX2

dt
= −D · X2 + Y2 ·�2(S2) · X2

dS2

dt
= D · (c2 · (So1 +
(z) − S1s) − S2) −�2(S2) · X2

(46)

where 
(z) = z·(dT(z)/dz) − T(z) + T(0) and T(0) = S1s = D·Ks1/
(�max1 − D).

The term
(z) is a vanishing perturbation (it vanishes at equilib-
rium). Moreover, given the asymptotic expansion for T(z), it follows
that

�(z)
So1

=
(
Ks1
So1

)
·
(

D

�max 1

){ (z/So1)2

(1 + z/So1)2
+ (z/So1)3 + 3 · (z/So1)2

(1 + z/So1)3

·
(

D

�max 1

)
+ 6 · (z/So1)2

(1 + z/So1)4
·
(
Ks1
So1

)
·
(

D

�max 1

)
+ . . .

}
(47)

Consequently, since D/�max1 � 1 and Ks1/So1 << 1, it follows that
�(z)/So1 << 1; hence the magnitude of the term 
(z) can be
neglected in (46).

Fig. 15 shows that for some representative initial values of the

state variables (z, X2, S2), the contribution of the function 
(z)
is very small and eventually approaches zero. In particular, the
dynamics of the function 
(z) is shown after a disturbance has
been imposed and has moved the system away from steady state.
The disturbance was a pulse increase or decrease in the input
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Moreover, an extra assumption is made in this case:

(A4) The hydrolysis constant, k, and the dilution rate, D, are of the
same order of magnitude.
ig. 15. Dynamic response of the function
(z) for representative initial conditions
orresponding to pulse disturbances.

oncentration which lasted for 5d and afterwards, the input con-
entration returned to its normal value of 10,000 mg/l. The values
f state variables at the moment the pulse was “off”, zi, X2i and
2i, were set as initial conditions for the dynamics. It is seen from
ig. 15 that the function 
(z) hardly contributes to (46c) com-
ared to the other terms of the equation and therefore it could be
eglected.

By neglecting the term
(z), the dynamics of z no longer affects
he system, therefore the differential equation for z can be dropped
nd the model further reduces to:

dX2

dt
= −D · X2 + Y2 ·�2(S2) · X2

dS2

dt
= D · (c2 · (So1 − S1s) − S2) −�2(S2) · X2

(48)

onsequently, the original four-state model (31), with the exception
f very short times, is reducible to the three-dimensional model
escribed by (45) or (46) and finally to the two-dimensional model
48). The model reduction was made possible because the aci-
ogenic biomass growth is a slow process compared to soluble
ubstrate utilisation (see how abrupt the change in substrate con-
entration is, compared to the biomass concentration in Fig. 14);
he substrate level is very quickly adjusted to a certain level (cor-
esponding to a point on the invariant manifold) and then it is
lowly converted as the biomass level adjusts slowly. Moreover,
he effect of the reaction invariant dynamics of the acidogene-
esis process on the methanogenesis process (accounted for by
he term 
(z) in equation (46c)) is minuscule and therefore can
e neglected, leading to a further reduction of the model. The
ynamic responses of X2 and S2 from the two-state system (48)
re almost identical to the ones from original four-state system
31), as can been seen by a comparison of the phase portrait of (48)
nd the projection of the phase portrait of (31) on the X2–S2 plane
Fig. 16).

.2. Case 2: Model reduction for anaerobic digestion in the
resence of particulate substrate

In order to describe the anaerobic digestion of solid wastes or
astewaters with a high solid content, a three-step process is con-

idered, as depicted in Fig. 17. The first process step is hydrolysis
nd the subsequent steps are acidogenesis and methanogenesis.
ydrolysis of the particulate matter is an extra-cellular enzymatic

tep and usually follows first-order kinetics. The acidogenesis and

ethanogenesis steps involve both bacterial growth and substrate

onsumption, as in the four-state model (31) described in the pre-
ious section. These considerations result in a five-state model
xpressed by the following set of mass balances applied to a con-
Fig. 16. Trajectories of S2 versus X2 from the original four-state model (31) and
reduced two-state model (48) lie on top of each other.

tinuously stirred tank reactor (CSTR).

dSP
dt

= D · Sop − D · SP − k · SP
dX1

dt
= −D · X1 + Y1 ·�1(S1) · X1

dS1

dt
= D · So1 − D · S1 + c1 · k · SP −�1(S1) · X1

dX2

dt
= −D · X2 + Y2 ·�2(S2) · X2

dS2

dt
= −D · S2 + c2 ·�1(S1) · X1 −�2(S2) · X2

(49)

where Sp and Sop are the concentrations of the particulate substrate
inside the reactor and the feed respectively, k is the hydrolysis rate
constant, and c1 is the stoichiometric coefficient of the conversion
of the particulate to the dissolved substrate. The other variables and
parameters have already been defined in Section 5.1.

The main implication of including a hydrolysis step in the anaer-
obic digestion process is that this step precedes a faster step (i.e.
acidogenesis). The serial structure of the system is clearly visible
in the model (49). Indeed, the first equation (describing dynam-
ics of the step of hydrolysis) is independent of the other equations.
The next two equations (describing dynamics of the step of acido-
genesis) are independent of the last two equations (describing the
dynamics of the step of methanogenesis).

Throughout this section, it will be assumed that Assumptions
(A1) and (A3) of Section 5.1 still hold, while (A2) holds with So1
replaced by So1 + c1 · Sop · k/(D+ k), which represents the total avail-
able dissolved substrate (including the dissolved substrate resulting
from the hydrolysis of particulate matter):

(A2) So1 + c1 · S
o
p ·k
D+k >> KS1 and

c2 ·
(
So1 + c1 · S

o
p ·k
D+k

)
>>

√
KS2 · KI
Fig. 17. Anaerobic digestion as a three-step process.
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Under the above assumptions, system (49) has two non-trivial
teady states, out of which, only one is locally asymptotically
table, as in the case of the four-state model (31). In the numer-
cal calculation that will follow, typical values of the additional
arameters used in the five-state model were used: k = 0.1 d−1

34], c1 = 1, Sop = 50,000 mg/l. The values of dilution rate and the
ther parameters were kept the same as before. The values of
he state variables at the corresponding asymptotically stable
on-trivial steady state are Sps = 33,333.33 mg/l, X1s = 2933.21 mg/l,
1s = 1.15 mg/l, X2s = 1059.3 mg/l and S2s = 182.96 mg/l. Linearizing
he system (49) around the above steady state, the corresponding
igenvalues are given by:

1 = −(D+ k) = −0.3

2 = −D = −0.2

3 = −�max 1 · Ks1
(Ks1 + S1s)

2
· (So1 − S1s + c1(Sop − SPs)) = −4416.65

4 = −D = −0.2

5 = −�max 2 · (Ks2 − S2
2s/KI)

(Ks2 + S2s + S2
2s/KI)

2
· (c2 · (So1 − S1s + c1 · (Sop − SPs)) − S2s)

= −11.39

nd they are all negative.
Keeping in mind the serial structure of the system (49), the

igenvalue �1 characterizes the dynamics of hydrolysis, while the
igenvalues �2 and �3 characterize the dynamics of acidogene-
is, and the eigenvalues �4 and �5 characterize the dynamics of
ethanogenesis. In particular, eigenvalues �3 and �5 characterize

he speed of the reactions for the acidogenesis and the methano-
enesis steps respectively, while eigenvalues �2 =�4 characterize
he corresponding reaction-invariant dynamics. Here, similarly to
ection 5.1, the “speed” of acidogenesis reaction is much higher
han that of the reaction-invariant dynamics

�2

�3
≈
(

D

�max 1

)
·
(

Ks1
So1 + c1 · SoP · k/(D+ k)

)
<< 1

nd also, it is much higher than the speed of methanogenesis reac-
ion

�5

�3
� �max 2

�max 1
· c2 · KS1
KS2

<< 1

Keeping in mind that, because assumption (A4), the dynamics
f hydrolysis is of similar speed to reaction-invariant dynamics (�1
nd �2 are of the same order of magnitude), the conclusion is that
here is only one fast mode (characterized by eigenvalue �3), and
t belongs to the acidogenesis step. Therefore, the dynamics of the
naerobic digestion system conforms with the setting of Fig. 10 with
he fast-reaction process step (acidogenesis) in between two slow
teps (hydrolysis and methanogenesis). The slow-motion invariant
anifold will be an algebraic equation relating only the variables

f the first two steps (hydrolysis and acidogenesis) Sp, X1, S1.
Fig. 18 depicts the phase portrait for the hydrolysis and acido-

enesis steps. For every initial state, the trajectory is initially an
lmost vertical line, indicating an abrupt change in S1 while Sp and
1 remain practically unchanged, until it “hits” a surface and sub-

equently lies on the surface, ending at the steady state (large dot).
he picture is similar to Fig. 14, with the exception that the invariant
anifold is now a 2-dimensional surface instead of a curve.
In order to proceed with model reduction, we must isolate the

ast reaction dynamics of acidogenesis from the slow reaction-
Fig. 18. Phase portrait for the hydrolysis and acidogenesis steps at D = 0.2 d−1. The
surface corresponds to the slow-motion invariant manifold.

invariant dynamics and the slow hydrolysis dynamics. In particular,
defining the reaction invariant

z = c1(SP − Sop) + S1 − So1 + X1

Y1
(50)

and using z, SP, S1 as dependent variables, the dynamic equations
for hydrolysis and acidogenesis (49a)–(49c) are transformed to:

dz

dt
= −D · z

dSP
dt

= D · Sop − D · SP − k · SP
dS1

dt
= D · (So1 − S1) − Y1 ·�1(S1) · (So1 − S1 + c1 · (Sop − SP) + z)

+ c1 · k · SP

(51)

In the transformed system, the slow reaction-invariant dynam-
ics (z) together with the slow hydrolysis dynamics (SP) precede the
fast reaction dynamics (S1). The slow-motion invariant manifold is
of the form

S1 = T(z, SP) (52)

and satisfies the invariance equation:

(−D · z)∂T
∂z

+ (D · Sop − (D+ k) · SP)
∂T

∂SP

= D · (So1 − T(z, SP)) − �max 1 · T(z, SP)
KS1 + T(z, SP)

·(So1 − T(z, SP) + c1 · (Sop − SP) + z) + c1 · k · SP (53)

This must be solved with initial condition

T

(
0,
D · Sop
D+ k

)
= S1s, where S1s = D · Ks1

�max 1 − D (54)

which states that the invariant manifold must pass through the
steady state point.

The partial differential Eq. (53) is singular at the point around
which it should be solved (zs = 0, Sps = D · Sop/(D+ k)), since the
coefficients of the partial derivatives of the unknown function van-
ish at that point. A sufficient condition for existence and uniqueness
of solution of (53) is the following non-resonance condition:

There are no non negative integers M, N with M + N > 0 such that

�3 = M·�1 + N·�2, as direct result of Lyapunov’s auxiliary theorem
for singular partial differential equations [31].

Eq. (53) can be solved via power series around the point (zs =
0, Sps = D · Sop/(D+ k)) up to a certain truncation order, or via a sin-
gular perturbation approach for small D/�max1, similarly to (37).
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For the particular numerical values of the parameters under
onsideration and over the ranges of z ∈ [−20,000, 20,000] and
P ∈ [−20,000, 50,000], numerical convergence of the power series
xpansion is achieved at truncation order of 7. Singular perturba-
ion analysis leads to the following expression for the invariant

anifold:

(z, SP) = Ks1 · So1 + c1 · k/D · SP
So1 + c1 · (Sop − SP) + z ·

(
D

�max 1

)

+Ks1

[(
So1 + c1 · k/D · SP

So1 + c1 · (Sop − SP) + z

)2

− Ks1 · c1 · k/D(Sop − (1 + k/D) · SP)(
So1 + c1 ·

(
Sop − SP

)
+ z
)2

− 2 · Ks1(So1+ c1 · k/D · SP)(z + c1 · (Sop− (1 + k/D) · SP))

(So1 + c1 · (Sop− SP) + z)3

]

×
(

D

�max 1

)2
+ O
(

D

�max 1

)3
(55)

Both methods result in the same accuracy of approximation
f the invariant manifold surface (Fig. 18). The three-dimensional
ystem (51) that describes the hydrolysis and acidogenesis steps
educes to two differential equations plus the algebraic equation of
he invariant manifold:

dz

dt
= −D · z

dSP
dt

= D · SoP − D · SP − k · SP
S1 = T(z, SP)

X1 = Y1(So1 − T(z, SP) + c1 · (Sop − SP) + z)

(56)

Appending the dynamic equations for methanogenesis (Eqs.
49d) and (49e)), the resulting 4th-order model can be rearranged
n the form:

dz

dt
= −D · z

dSP
dt

= D · SoP − D · SP − k · SP
dX2

dt
= −D · X2 + Y2 ·�2(S2) · X2

dS2

dt
= D ·

(
c2 ·
(
So1 + c1 · S

o
P · k
D+ k +
(z, SP) − S1s

)
− S2

)

−�2(S2) · X2 + c1 · c2 · k ·
(
SP − D · SoP

D+ k

)
(57)

here S1s = D · Ks1/(�max 1 − D)
and

(z, SP) = z
∂T

∂z
(z, SP) −

(
Sop − D+ k

D
· SP
)
∂T

∂SP
(z, SP)

− T(z, SP) + T
(

0,
D · SoP
D+ k

)
(58)

The term
(z,SP) is a vanishing perturbation (it vanishes at equi-
ibrium). Moreover, given the asymptotic expansion for T(z,SP), it
ollows that:


(z, SP)
So1 + c1 · SoP · k/(D+ k)( ) ( )
= Ks1
So1 + c1 · SoP · k/(D+ k) · D

�max 1
ring Journal 150 (2009) 462–475

×
[
c1 · ((k/D)2 − 1) · (SP − D · SoP/(D+ k)) + z

So1 + c1 · (SoP − SP) + z

+ (So1 + c1 · k/D · SP) · [−z + c1 · (1 + k/D) · (SP − D · SoP/(D+ k))]
(So1 + c1 · (SoP − SP) + z)2

]

+ higher-order terms (59)

Consequently, since D/�max1 � 1 and Ks1/(So1 + c1 · SoP · k/(D+
k))<< 1, the magnitude of the term
(z,SP) can be neglected. Then,
the differential equation for z can be dropped and the model finally
reduces to:

dSP
dt

= D · SoP − D · SP − k · SP
dX2

dt
= −D · X2 + Y2 ·�2(S2) · X2

dS2

dt
= D · (c2 · (So1 − S1s) − S2) −�2(S2) · X2 + c1 · c2 · k · SP

(60)

In summary, the original five-state model (49), with the excep-
tion of very short times, is reducible to the four-dimensional
model (57) and further to the three-dimensional model (60). Model
reduction to (57) was made possible by projecting the dynam-
ics of hydrolysis and acidogenesis on their slow-motion invariant
manifold. Subsequently, because the effect of the corresponding
reaction invariant dynamics on the dynamics of methanogene-
sis was negligible, further reduction of the model to (60) was
possible.

6. Conclusions

Biochemical reaction systems are multistep processes. The rates
of some individual steps may differ significantly, while the rates
of other steps may vary at similar levels. In this work, we have
developed a systematic methodology for the reduction of the order
of the general system considered, based on the calculation of the
slow-motion invariant manifold, on which the process dynamics is
projected. Further reduction in the system order may be achieved
if certain slow modes have negligible contribution to the over-
all dynamics of the system. All these aspects were considered to
eliminate the fast dynamics of the acidogenesis step involved in
the anaerobic digestion process, in the cases of a five- and a four-
dimensional model. Neglecting acidogenesis, altogether leads to a
three- and two-dimensional model respectively which describes
only the dynamics of hydrolysis (if a particulate substrate is present)
and methanogenesis.
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